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Large Language Models (LLMs) are key techniques to drive
an intelligent system for handling multiple tasks. An in-
creasing number of LLMs-driven experts with diverse ca-
pabilities have been developed to meet the needs of various
tasks, leading to a rise in corresponding benchmarks de-
signed to evaluate their performance. It is challenging for a
single LLMs-driven expert to achieve optimal performance
across all benchmarks. Collaboration of experts special-
ized in different areas offers a promising way to achieve this
goal. This paper proposes Bench-CoE, a simple framework
for Collaboration of Experts (CoE) by effectively exploit-
ing the evaluation from benchmarks. Specifically, we begin
by identifying and leveraging each LLMs’ strengths in var-
ious benchmark subjects to route specific tasks to the most
suitable model and select which models to include in the
collaboration . Finally, we conduct various data distribu-
tions experiments on both language and multi-modal tasks
to validate that our Bench-CoE achieves better overall per-
formance than any single model. We hope this serves as a
baseline for further research in this area.

1. Introduction

Large Language Models (LLMs) are capable of performing
various natural language processing (NLP) tasks, by using
auto-regressive prediction conditioned by the task prompt
[2, 23]. LLMs’ ability in describing and unifying tasks
make them being the key components in current visual un-
derstanding tasks, which gives rise to the Large Multimodal
Models (LMMs) [16, 37]. While these models are able to
perform all kinds of visual and language tasks, they may
have different expertise and show significant diversity in
performance for different tasks. We refer to these LLMs-
driven models as experts in this paper. One interesting ques-
tion arises that how can we effectively identify and exploit
the abilities of different experts.

A bunch of benchmark has been initially proposed to
evaluate the performance of LLMs in certain tasks [1, 24,
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Figure 1. The framework of Bench-CoE. Our Bench-CoE Frame-
work directly trains the router based on the benchmark, utilizing
either subject-level or query-level labels for task assignment. This
approach enables Bench-CoE to seamlessly integrate multiple ex-
pert models without incurring additional training costs, while si-
multaneously enhancing task performance.

29]. Benchmarks are becoming more diverse, offering in-
creasingly comprehensive evaluations of model capabili-
ties, as the rapid progress. These include benchmarks such
as MMLUTJ30] for language tasks and MMMU [34] for mul-
timodal tasks, both designed to assess models across mul-
tiple disciplines. Additionally, there are benchmarks for
specific domains, such as GSM8K][7] for mathematics and
VCR[35] for visual reasoning. As a result, the performance
display for LLMs is shifting from a single score to a more
detailed ranking system that reflects models’ strengths and
weaknesses.

This paper addresses to identify and exploit the abilities
of different experts from the benchmark evaluation. We pro-
pose Bench-CoE, a simple framework for Collaboration of
Experts (CoE) by effectively exploiting the evaluation from
benchmarks. Bench-CoE includes a set of experts, a router
for assigning task to corresponding experts, and a bench-



mark to provide targets for training the router. During train-
ing, a router is trained for assigning each query to the target
experts, and these supervised information is from the bench-
mark. During inference, given certain query, appropriate
models are selected to perform the task from the assignment
of the router. We formalize this framework and provide sev-
eral scenarios to evaluate the performance of Bench-CoE.

Based on our framework, we summarize two ways to
train a router by conducting the supervised labels from the
benchmark: query-level and subject-level labels. Query-
level labels are conducted by providing the performance
of each expert for each query from benchmark. We note
that the recently proposed methods for routing experts are
all based on query-level labels[17, 20]. Even thought the
query-level labels provide enough information to super-
vise the router for experts selection, one drawback is that
it needs assess the results for each query of benchmark,
which is expensive in computation and time-cost. On the
contrary, subject-level labels can be obtained directly from
the benchmark, since current benchmark usually provide
subject-level evaluation.

We evaluate the effectiveness and generalization of
query-level and subject-level routing learning mechanisms
through a series of experiments. The experimental re-
sults show that both routing mechanisms improve the per-
formance of the Bench-CoE model over using the best
individual model. Specifically, due to the fine-grained
routing decisions, the query-level router performs better
on in-distribution data but is prone to overfitting on out-
of-distribution data. In contrast, the subject-level router
demonstrates stronger generalization on out-of-distribution
data, showcasing its better adaptability and robustness.

To summarize, our main contributions are as follows:

* We propose Bench-CoE, a simple and efficient pipeline
for combining and routing LLM-driven experts, which
achieves flexible and efficient task routing without rely-
ing on extensive labeled data and large-scale training.

* We utilize the performance of each model on benchmarks
to select the LLMs to be combined and construct subject-
level and query-level datasets to support accurate routing
for various specialized tasks.

* Experiments demonstrate that the proposed method out-
performs single models in multi-task scenarios, enhanc-
ing cross-domain multi-task processing performance with
almost negligible inference cost.

2. Related Work

Recent research has focused on the efficient utilization and
combination of LLMs in multi-task environments, aiming
to meet diverse query requirements and manage resource
constraints effectively. Researchers have investigated sev-
eral routing and integration strategies, developing methods

that improve the task-handling efficiency of LLMs. These
existing methods can be broadly categorized as follows:

2.1. Mixture of Experts

The Mixture of Experts (MoE) framework leverages mul-
tiple subnetworks as experts (e.g. FNN) with sparse acti-
vation, activating only a subset of experts per input to re-
duce computational costs while maintaining high perfor-
mance. A milestone in MoE was achieved with Google’s
Switch Transformer [10], which introduced a simplified
routing mechanism to activate a few experts based on in-
put features. Recent work has emphasized modularity to
enhance MoE’s adaptability. For example, RankMean [22]
uses module-level importance scoring to efficiently merge
fine-tuned models without access to training data. Similarly,
routing mechanisms have gained prominence, with meth-
ods like PolyRouter [26] extending the MoE paradigm to
multi-LLM querying via predictive routing, and HDMoLE
[19] employing hierarchical routing and dynamic thresh-
olds for multi-domain fine-tuning. Overall, MoE models
are centered on expert sub-models, aiming to integrate the
specialized capabilities of these experts by combining their
parameters and submodules. However, certain parameter-
sharing approaches in MoE models often lack sufficient in-
terpretability regarding the specific roles and contributions
of individual expert sub-models. This lack of transparency
poses challenges in understanding the decision-making pro-
cess and the functionality of each expert, which may limit
the model’s trustworthiness and applicability.

2.2. Parallel Inference CoE

Parallel Inference CoE aims to reduce inference costs by
balancing resource utilization across models. FrugalGPT
[3] uses a cascading strategy where tasks are processed se-
quentially across LLMs, dynamically adjusting model us-
age to optimize costs. LLM-Blender [14] enhances re-
sponses by combining multiple LLMs through pairwise
ranking and fusion, though its scalability is constrained
by its dependence on high-quality data. Similarly, Hybrid
LLM [9] routes simpler tasks to smaller models while re-
serving larger models for complex queries, but it often re-
lies on extensive labeled data for effective routing decisions.
GraphRouter [11] introduces a graph-based framework for
routing, treating task and model selection as an edge predic-
tion problem, though periodic updates and additional train-
ing data are required for new models. Alternatively, Ea-
gle [36] offers a training-free routing mechanism that dy-
namically selects models using global and local ranking,
excelling in real-time scenarios but facing limitations with
highly specialized tasks. Parallel inference models, while
capable of providing insights into the overall capabilities
of different expert sub-models, require the same input to
be dispatched to each expert sub-model for independent in-
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Figure 2. Comparison of routing methods in LLMs combination: (a) The MoE model utilizes multiple FFNs as expert modules during
inference. (b) The Parallel-Inference-CoE model requires each query to pass through all experts during inference. (c) While only the best
expert is selected for inference, all expert parameters are needed during training. (d) Our Bench-CoE model leverages only benchmark
information during training without involving all experts and uses only the best expert during inference.

ference during execution. This approach results in signif-
icant computational resource wastage, substantially reduc-
ing inference efficiency. The inefficiency becomes particu-
larly pronounced in scenarios with high computational de-
mands, highlighting the need for improved resource utiliza-
tion strategies.

2.3. Query-Level CoE

At the query level, recent methods optimize routing by
tailoring expert selection for each input. ZOOTER [17]
employs reward-guided strategies, extracting reward sig-
nals from training queries to direct routing decisions and
minimize computational overhead. However, its reliance
on fine-tuned reward models can constrain its applicabil-
ity. Similarly, RouteLLM [20] dynamically assigns simpler
tasks to lighter models and reserves stronger models for
more complex queries, balancing cost and quality. How-
ever, its dependence on large labeled datasets and prefer-
ence data limits its utility in data-scarce environments. Al-
though query-level mixture-of-experts (CoE) models enable
the most fine-grained utilization of expert sub-model capa-
bilities, they require extensive datasets with prior annota-
tions. Each expert sub-model must undergo inference test-
ing on these large-scale datasets to evaluate its performance
on specific data. However, the resulting capability assess-
ments are highly sensitive to variations in data distribution,
which can adversely impact the model’s generalization per-
formance and limit its applicability across diverse scenarios.

3. Method

In this section, we provide a detailed description of the
Bench-CoE. We first formulate a comprehensive frame-
work. Then, under this framework, we formulate two ap-
proaches for training routing using BenchMark: the query-
level approach and the subjective-level approach. The
query-level approach is an abstraction of some previous
methods. However, this method requires instance-level
testing to define the data labels for training the routing,
which makes it difficult to generalize. To address the gen-
eralization issue, we further propose a new approach, the
subjective-level approach. We will explain these in detail
next.

3.1. Bench-CoE Definition and Notation

Bench-CoE is an approach of expert collaboration. It
enhances the performance of task processing through the
router, which can be described as:

0= f(CC, {Ml}lL:u R(Q)),

where z is the input data, o represents the final output re-
sult. {M;}E | represents a set of expert models, each ex-
pert model M; may focus on processing specific sub-tasks.
0 refers to the parameters of the router R , which regulates
the collaboration of the experts. The Bench-CoE selects
the most suitable expert from a group of multiple experts to
process the input, with the goal of achieving overall perfor-
mance superior to that of a single expert model.

Benchmark and Subjects A set containing V' benchmark
datasets is defined as {D;,Ds,...,Dy}. A benchmark



dataset Dp may contain K subjects, defined as follows:

Dp ={57,87,...,8(} (1)

Each subject S corresponds to a set as shown below:

B
S¢ = {(g te) Fity- @
Where 22 represents the i-th input in subject SP, t5. is
the corresponding true label or standard answer, nkB is the
number of samples in subject S ,f .
Models Set and Performance A set containing L LLMs is
defined as follows:

M = {My, M, ..., M}. 3)

For an input query:ckBi , the output of M,, is shown as fol-
lows:

oB M, (z5). 4)

m,ki —

For each benchmark, there is a corresponding evaluation
metric function Pp to assess the performance of M, on

the samples (25,5, defined as follows:

pﬁ,ki = PB(Oﬁ,kiathi>' &)

Router Definition Let RZ (z) be a routing function. It is
parameterized by 6 and outputs a probability distribution
over L models:

Ry (z) =R(z,0,L). (6)

Where R} (z) denotes the probabilities of L models to pro-
cess the input x. For text inputs, Router R can be a BERT
classifier[8]; for multi-modal inputs, Router R can be a vi-
sual language model.

Based on the framework formulated above, we refine two
approaches that are query-level approach and subjective-
level approach.

3.2. Query-Level Bench-CoE

Query Label The performance of each model on each
query xP. can be evaluated through test evaluation. The id
of the model with the best performance is designated as the
query-level label for that query, as defined below.

Yie; = Argmax pl;. (7

If multiple models achieve optimal performance on the
same query, we select the model with the best overall per-
formance on the benchmark.

Router Dataset Once the label for each query are obtained,
the benchmark dataset can be used to construct the query-
level dataset Dgyery, represented as:

Dquery = {(kai,y,i) |k=1,....,K; 1= 1,.‘.,715}.
®)
Router Train The dataset can be used to train the router,
and the expression for the query-level router loss function
Laguery (0) is as follows:

B
K nj

Laery(0) =Y > U(RY (x5)), yh). ©)

k=1i=1

Model Set Theoretically, to achieve the best combination
results, the performance of all large models should be tested
on each individual query. However, this approach is not
practical. Since the models selected based on subject spe-
cialization are already the best within their respective fields,
we can directly choose them for combination. Experimental
results show that this simplified approach is effective.
Evaluation For each new input z, the router identifies the
optimal model by predicting the model best suited to han-
dle the input. The query-level model routing process is as
follows:

Alquery = arg max R§ (z). (10)

To evaluate the performance of the collaborative system on
the dataset 7 = {(z;, tj)}jvil, the query-level performance
is as follows:

w
1
Ploe = WZPT (Mg (), 15) - (n
j=1

The Query-Level Bench-CoE method selects an LLM
specialized in processing a given query, achieving good
results on data within the same distribution. However, it
requires testing the performance of numerous LLMs on
a large dataset just like other query-level models[17, 20],
which can be challenging, and this approach struggles to
maintain generalization on out-of-distribution data. We
wondered if there could be a way to achieve CoE without
the need for extensive testing. Upon analyzing this, we re-
alized that the key to achieving this is to obtain an LLM
specialized in handling specific queries. When we examine
the performance of various LLMs on benchmark subjects,
this can actually serve as a type of label—a label at the sub-
ject level. This insight leads us to the next approach we
propose: Subject-Level Bench-CoE.

3.3. Subject-Level Bench-CoE

Subject Label For each input z2, in the subject SP, we can
directly obtain the subject-level label y,ﬁ for the query from
the benchmark. Since the benchmark has already provided
the following computational results when the results were



released, our method does not require any additional manual
data labeling.

B
n
1 k
B B
Yki = argmax 7nf 5 1 Dl ki (12)
=

Router Dataset Once the subject-level labels Dypject for
the queries are determined, the subject-level routing dataset
can be obtained, as shown below:

Daubject = {(mﬁ,ylg) |k=1,....K; i= 1,...,nkB}.

13)

This dataset ensures that queries under each subject share

the same label, making the router route query based on

subject-specific knowledge.

Model Set From the subject-level routing dataset, we select

the appropriate models M, to incorporate into our collabo-

rative system, which can be represented as follows:

Mer = {Ml ‘ l= ylgvy]g € Dsubject} . (14)

The Router Train and Evaluation processes of subject-
level are the same as the query-level.

3.4. Evaluation Scenarios

To validate our approach, we designed three types of evalu-
ation scenarios for both language and multimodal tasks, as
follows.

Naive Evaluation Scenario. Given that the MMLU Pro
and MMMU datasets contain only one subset, we utilized
the test dataset as the benchmark for router training. The
router training dataset was constructed from Dy as de-
scribed in Section 4. Both composite and individual model
performances were evaluated on Di. As the benchmark
size increased to encompass various subdomains, the ad-
vantages of our proposed method became increasingly ev-
ident. By leveraging benchmark information, models were
combined to achieve superior performance.

In-distribution Evaluation Scenario. We utilized the
training and validation subsets of the dataset respectively in
the training and testing phases. The router training dataset
was constructed from Dy, as described in Section 4. Both
composite and individual model performances were evalu-
ated on D,,. This approach tested the performance of the
combined model under the same data distribution but with
different data splits, enhancing its generalization compared
to the first scenario.

Out-of-distribution Evaluation Scenario. The router
training dataset was constructed from D; as described in

Section 4. Both composite and individual model perfor-
mances were assessed on D,. This approach tested the per-
formance of the combined model under varying data distri-
butions, further improving its generalization.

These experiments validated our approach across differ-
ent tasks and data distributions. The results demonstrated
that our method could enhance composite model perfor-
mance without the need for extensive training or complex
labels, consistently outperforming individual models across
multiple benchmarks.

4. Experiments

We conducted extensive experiments on both language and
multimodal tasks to validate the effectiveness of our pro-
posed method. The experiments were designed to assess
the performance of our Bench-CoE model against individ-
ual LLMs across various settings, demonstrating the versa-
tility and robustness of our approach.

Table | summarizes the characteristics of the datasets
used in our experiments. It details whether each dataset con-
tains multiple subsets, which is crucial for understanding
the diversity and complexity of the data, as well as whether
the datasets are annotated with subject labels, indicating
their suitability for supervised learning tasks.

Dataset Train Val Test Has Subject
MMLU Pro[30] No Yes Yes Yes
Winogrande[25] Yes Yes Yes No
Big Bench Hard[27] No No Yes No
MMMU[34] No Yes Yes Yes
MMstar[4] No Yes No Yes

Table 1. Analysis of Datasets Characteristics

These datasets were selected to provide a comprehensive
test bed that challenges the capabilities of our models under
both homogeneous and heterogeneous conditions. This var-
ied dataset setup allows us to rigorously evaluate the adapt-
ability of the composite model in scenarios ranging from
closely related data subsets to entirely distinct data distribu-
tions.

To assess the performance of our method in different sce-
narios, we performed three sets of experiments on language
tasks and multimodal tasks.

4.1. Naive Evaluation

In the language task experiment, Bench-CoE was trained
and evaluated on the same dataset MMLU-Pro[30]. This
setup tests the router’s ability to select the most suitable
model when both training and testing datasets are the same.
We performed a comparative analysis between Bench-CoE,
employing both subject-level and query-level routers, and
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Figure 3. Performance Across Subjects on MMLU Pro. Bench-
CoE (Query-Level) outperforms all other models comprehen-
sively. Bench-CoE (Subject-Level) achieves performance compa-
rable to the top MoE model, Gemma-2-9b-it, and outperforms it
in certain subjects.

the four individual LLMs that constitute it. Detailed per-
formance metrics for each model are presented in Table 2,
while the results across various subjects are depicted in Fig-
ure 3.

Model Accuracy IncrementA
Gemma-2-9b-it[28] 52.04% 0
Llama-3-Smaug-8B[21] 38.10% -
Mathstral-7B-v0.1[12] 41.78% -
Qwen2-7B-Instruct[31] 47.07% -
Bench-CoE (Subject-Level) 52.24% 0.2%
Bench-CoE (Query-Level) 64.28 % +12.24%

Table 2. Performance on MMLU-Pro.

The Bench-CoE with the query-level router achieved a
performance of 64.28%, significantly outperforming all in-
dividual models. The Bench-CoE with the subject-level
router also surpassed individual models, though with a
smaller margin. This demonstrates that Bench-CoE effec-
tively leverages the strengths of different models when the
data is consistent. The query-level router’s finer-grained
control allows it to select the best model for each specific
input, leading to substantial performance gains, while the
subject-level router improves performance by routing inputs
to models generally better in specific subjects.

In the multimodal task experiment, we trained the
Bench-CoE and evaluated it on the same subset of the
MMMU[34] dataset. We compared Bench-CoE with a
subject-level router and three individual LLMs that consti-
tute it. The results are presented in Table 3. The perfor-

Technology
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T0.54
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Bench-CoE(subject) LLaVA-OV
InternVL2-8B MiniCPM-V

Figure 4. Performance Across Subjects on MMMU. Bench-
CoE (Subject-Level) achieves significantly superior performance
across almost all subjects.

mance across subjects is shown in Figure 4.

Model Accuracy  IncrementA
MiniCPM-V-2.6 [32] 45.22% -
InternVL2-8B [5, 6] 47.67% 0
LLaVA-OV-7B [15] 46.67% -
Bench-CoE (Subject-Level) 51.78% +4.11%

Table 3. Performance on MMMU.

The results demonstrate that Bench-CoE achieved a per-
formance score of 51.78%, which is significantly higher
than that of all individual models. This result underscores
the effectiveness of our approach in multimodal settings, as
it successfully leverages the strengths of diverse models to
enhance overall performance.

Comparision to Larger LLMs. We compare our Bench-
CoE by routing several small-scale LLMs to certain LLMs
with larger parameters Llama-3-70B [18]. We route four
individual models as Table 2 by using our Bench-CoE. The
results are shown in Figure 5. We find that our Bench-CoE
(the largest model used is only 9B) better than Llama-3-
70B.

We also compare our Bench-CoE to Mixtral-8x7B-
Instruct-vO.1 [13] and Yi-1.5-34B-Chat [33], which uses
MOoE with larger parameters. The results are shown in Fig-
ure 6. Our Bench-CoE consistently obtains better perfor-
mance than Mixtral-8x7B-Instruct-vO.1 and Yi-1.5-34B-
Chat.
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Mixtral-8x7B-Instruct-v0.1, and Bench-CoE. Bench-CoE (Query-
Level) surpasses the other two models across all subjects.

4.2. In-distribution Evaluation

This experiment assesses the performance of the route when
trained and tested on different splits of the same dataset.
Specifically, the router was trained on the Winogrande train-
ing set and evaluated on the validation set. We conducted a
comparative analysis of four individual LLMs and our CoE
model using the query-level router. The results are pre-
sented in Table 4.

According to the results, Bench-CoE achieves the high-

Model Accuracy IncrementA
Qwen2-7B-Instruct 65.27% -
Gemma-2-9b-it 66.14% 0
Mathstral-7B-v0.1 55.95% -
Llama-3-Smaug-8B 57.06% -
Bench-CoE (Query-Level) 67.01% +0.87 %

Table 4. Performance on Winogrande.

est performance with an accuracy of 67.01%, surpassing
all individual models. The improvement over the best-
performing individual model, Gemma-2-9b-it, is modest
yet significant. Even when trained and tested on different
splits, the Bench-CoE effectively generalizes and directs in-
puts to the most appropriate models. This adaptability of
the query-level router contributes significantly to the per-
formance gains.

In the multimodal task experiment, the Bench-CoE
router was trained using the test set of MMMU and eval-
uated on the validation set of MMMU. The consistent per-
formance across different dataset splits confirms the effec-
tiveness of our approach. The detailed results are presented
in Table 5.

Model Accuracy  IncrementA
MiniCPM-V-2.6 45.22% -
InternVL2-8B 47.67% 0
LLaVA-OV-7B 46.67% -
Bench-CoE (Subject-Level) 50.78% +3.11%

Table 5. Performance on MMMU.

As shown in the table, Bench-CoE also outperforms in-
dividual models, achieving 50.78%. The minimal perfor-
mance drop compared to naive test indicates its effective-
ness, even when the router is trained and tested on different
splits.

4.3. Out-of-distribution Evaluation

To evaluate the generalization ability of Bench-CoE in lan-
guage tasks, it was trained on the MMLU-Pro and tested on
the validation set of Big-Bench-Hard[27]. The evaluation
included four individual LLMs that comprise Bench-CoE,
along with the full Bench-CoE, using both subject-level and
query-level routers. Performance results are detailed in Ta-
ble 6.

Based on the findings, Our Bench-CoE with the subject-
level router achieved the highest performance of 69.91%,
outperforming all individual models. The query-level
router also improved over individual models but performed
slightly worse than the subject-level router in this cross-
dataset scenario. The subject-level router generalizes better
across different datasets because it relies on broader sub-



Model Accuracy IncrementA
Qwen2-7B-Instruct 59.44% -
Gemma-2-9b-it 65.10% -
Mathstral-7B-v0.1 66.35% 0
Llama-3-Smaug-8B 63.62% -
Bench-CoE (Subject-Level) 69.91% +3.56 %
Bench-CoE (Query-Level) 67.07% +0.72%

Table 6. Performance on Big-Bench-Hard.

ject characteristics rather than specific input features, which
may vary between datasets. The query-level router may
overfit to the training dataset’s specific input patterns, lead-
ing to slightly reduced performance on unseen data.

In multimodal task experiment, we trained the router
on the MMMU validation set and evaluated it on the
MMStar[4] dataset. The results are in Table 7.

Model Accuracy  IncrementA
MiniCPM-V-2.6 54.33% -
InternVL2-8B 59.22% 0
LLaVA-OV-7B 55.86% -
Bench-CoE (Query-Level) 56.00% -3.22%
Bench-CoE (Subject-Level)  60.09% +0.87 %

Table 7. Performance on MMStar.

As shown in the table, Bench-CoE with subject-level
router achieved the highest performance of 60.09%, sur-
passing the best individual model(InternVL2-8B). This con-
firms that our method generalizes well to different datasets
in multimodal tasks, effectively leveraging the strengths of
individual models. However, the performance of the Bench-
CoE with query-level router has not surpassed that of the
best model, which we attribute to the router relying solely
on text input for classification, but many text inputs in the
multimodal dataset are similar, and distinguishing query
types requires image-based cues. Consequently, the gener-
alization performance of Bench-CoE with the query-level
router is suboptimal. Therefore, conducting experiments
with a multimodal router will be one of our future direc-
tions.

4.4. Overall Observations for Experiments

In language task experiments, our method consistently out-
performs individual models across different experimental
setups. The choice between subject-level and query-level
routers depends on the scenario: query-level routers ex-
cel when data distributions are similar, while subject-level
routers generalize better across different datasets. In mul-
timodal task experiments, our method effectively combines
multimodal models to improve performance. The consistent
performance gains across experiments validate the flexibil-

ity and robustness of our approach in handling different data
modalities.

5. Discussion

Advantages of Bench-CoE. Our Bench-CoE model con-
sistently outperforms individual models across a variety of
tasks and datasets. This model is highly flexible, effectively
addressing both language and multimodal tasks, and it does
not require extensive training phases or hard-to-obtain la-
bels. By utilizing benchmark performance to generate rout-
ing labels, Bench-CoE efficiently harnesses the strengths of
different models without necessitating significant additional
resource expenditures.

Reasons for Performance Gains. Here, we provide three

likely reason for why our Bench-CoE works well:

* Leveraging Model Strengths. Different models excel in
various subjects or on specific inputs. Bench-CoE capi-
talizes on these strengths by effectively routing each input
to the most suitable model.

* Effective Routing. The Bench-CoE router accurately pre-
dicts the best model for each input or subject, enhanc-
ing the overall system performance by ensuring efficient
model allocation.

* Generalization Ability. Particularly notable with subject-
level routing, Bench-CoE demonstrates strong general-
ization to unseen data distributions, consistently main-
taining robust performance across diverse datasets.

Limitations and Future Work. Although Bench-CoE
demonstrates considerable potential, there remain opportu-
nities for further enhancement:

* Router Complexity. Exploring more sophisticated routing
models may further enhance performance, especially in
scenarios where the query-level router overfits.

* Scalability. Assessing the method’s scalability with a
larger number of models or on larger datasets would be
valuable for real-world applications.

* Dynamic Model Integration. Investigating how to dynam-
ically add new models into the composite system with-
out retraining the router from scratch could improve the
method’s adaptability.

6. Conclusion

This paper proposed a simple framework for Collabora-
tion of Experts (CoE) by effectively exploiting the eval-
uation from benchmarks. The formalized query-level and
subject-level routing mechanism effectively integrates mul-
tiple LLMs, delivering superior performance across diverse
tasks and datasets. By harnessing the strengths of individ-
ual models without requiring extensive training or intricate



labeling, Bench-CoE establishes a robust baseline for ad-
vancing research in model integration and routing strate-

gies.
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A. Models and Datasets
A.1. Language Task Models

Qwen2-7B-Instruct is an instruction-focused language
model developed by Qwen Technology. Designed to excel
in various natural language understanding tasks, this model
utilizes an optimized decoding strategy to enhance perfor-
mance. With 7 billion parameters, it is well-suited for com-
plex text comprehension and generation tasks, especially
in Chinese contexts. Qwen2-7B-Instruct is particularly ef-
fective for instruction-responsive tasks such as content cre-
ation, information extraction, and dialogue systems.

Gemma-2-9b-it is a large language model developed by
Gemma Technologies with 9 billion parameters, tailored for
the information technology (IT) sector. Its training data en-
compasses a vast array of technical documents, program-
ming guides, and texts from open-source projects. This
model excels in understanding and generating highly spe-
cialized IT content, making it ideal for applications in tech-
nical support, documentation automation, and code parsing.

Mathstral-7B-v0.1 is a language model focused on solv-
ing mathematical problems, developed by the Mathstral
team. With 7 billion parameters, its training includes ex-
tensive mathematical educational materials and real-world
problem-solving examples. Mathstral-7B-v0.1 is designed
to aid in mathematical education, automated problem-
solving, and mathematical research, particularly effective
for complex mathematical questions and theoretical discus-
sions.

Llama-3-Smaug-8B is the latest large language model
from the Llama team, featuring 8 billion parameters. It has
been extensively pre-trained across multiple languages and
domains to provide broad knowledge coverage and deep se-
mantic understanding. Llama-3-Smaug-8B emphasizes per-
formance in complex linguistic reasoning, long-form text
generation, and multi-domain knowledge integration, suit-
able for advanced natural language processing tasks such as
text summarization, language translation, and cross-domain
knowledge-based question answering.

A.2. MultiModal Task Models

MiniCPM-V-2.6 is a multimodal language model developed
to integrate visual processing with natural language under-
standing. With 2.6 billion parameters, this model is a com-
pact version of the larger CPM series, designed to efficiently
handle tasks that require the synthesis of textual and visual
data. MiniCPM-V-2.6 excels in image captioning, visual
question answering, and other applications where joint un-
derstanding of text and image is critical. Its training regi-
men includes diverse datasets from both textual and visual
domains, ensuring robust performance across a variety of
multimodal challenges.

InternVL2-8B is an 8 billion parameter model specif-

ically designed for video-language tasks. Developed to
bridge the gap between dynamic visual content and lan-
guage, InternVL2-8B can analyze and generate descriptions
for video data, making it highly suitable for applications
such as automated video captioning, video content analysis,
and interactive video-based learning systems. Its architec-
ture allows for deep understanding of temporal video se-
quences in conjunction with textual descriptions, providing
state-of-the-art results in video understanding tasks.
LLaVA-OV-7B, standing for Language and Vision Anal-
ysis - OmniVision, is a 7 billion parameter language model
that specializes in comprehensive visual and textual inter-
pretation. This model integrates advanced vision capabili-
ties with natural language processing to perform tasks like
detailed image analysis, multimodal translation, and cross-
modal information retrieval. LLaVA-OV-7B is trained on
a vast array of multimodal data sources, enabling it to ef-
fectively understand and generate content that requires the
amalgamation of visual cues with textual data.

A.3. Language Task Datasets

MMLU-Pro is an extension of the original MMLU dataset,
designed to evaluate language models on professional-level
topics across a wide array of subjects. This dataset includes
complex questions that require not only language under-
standing but also domain-specific knowledge, ranging from
medicine and law to engineering and the arts. MMLU-Pro
aims to test the depth and breadth of a model’s understand-
ing of advanced topics, making it a rigorous benchmark for
language comprehension.

Winogrande is a large-scale dataset designed to im-
prove the robustness and challenge of Winograd Schema
Challenge-style tasks. It involves natural language infer-
ence tasks where the model must resolve ambiguity in sen-
tences using common-sense reasoning. The dataset is par-
ticularly known for its difficulty and diversity, requiring
models to utilize a deep understanding of context and world
knowledge to make the correct inferences.

Big-Bench-Hard is a subset of the broader BIG-bench
dataset specifically curated to challenge the capabilities
of language models with particularly difficult tasks. This
dataset includes a variety of language-based tasks such as
analogical reasoning, complex problem-solving, and ad-
vanced comprehension challenges that go beyond the typ-
ical capabilities of standard language models, pushing the
limits of what AI can understand and process in textual
form.

A.4. MultiMode Task Datasets

MMMU is a comprehensive dataset designed for evalu-
ating the performance of multimodal models across tasks
that require simultaneous understanding of text, image,
and sometimes audio content. This dataset includes chal-



lenges such as cross-modal retrieval, multimodal reasoning,
and synchronizing visual content with textual descriptions.
MMMU aims to simulate real-world scenarios where multi-
ple types of data must be integrated and interpreted together.

MMStar is a multimodal dataset focused on the interplay
between visual and textual data in entertainment and media
contexts. It includes annotated images and videos from var-
ious media sources, coupled with descriptive texts and con-
textual information. The dataset is utilized for tasks such as
multimedia content summarization, sentiment analysis, and
thematic classification, testing a model’s ability to navigate
and interpret complex media-rich environments.

B. Experiment Details

B.1. Language Experiment

Due to the current limitations in large model evalua-
tion techniques, there is a relative scarcity of bench-
marks and datasets specifically tailored to academic disci-
plines. To the best of our knowledge, only the MMLU-
Pro and Big-Bench-Hard datasets include manually anno-
tated discipline-specific labels. This poses significant chal-
lenges to the experimental design of our Bench-CoE model.
To thoroughly evaluate the performance of Bench-CoE, we
conducted the following three types of tests:

During the naive test phase, we selected the MMLU-Pro
dataset, which features well-defined discipline-specific la-
bels, for training and evaluation of the BERT model. How-
ever, since the MMLU-Pro dataset only provides validation
and test sets, we conducted both training and testing on the
validation set. As the experiments and evaluations in this
phase were performed on the same dataset, the results pri-
marily serve to demonstrate the basic feasibility of our pro-
posed approach. To further evaluate the effectiveness and
generalizability of Bench-CoE, we designed more sophis-
ticated experiments, including both in-distribution and out-
of-distribution tests.

In the in-distribution test phase, we evaluated Bench-
CoE using the Winogrande dataset, which provides a clear
separation between training and test sets. Specifically, we
trained the Bench-CoE model on the training set of Wino-
grande and tested it on the corresponding test set. How-
ever, since the Winogrande dataset lacks strong discipline-
specific features (e.g., no manually annotated discipline la-
bels), it was not possible to directly assess the model’s ca-
pabilities through a discipline-wise leaderboard. As a re-
sult, we focused solely on evaluating the query-level per-
formance of the Bench-CoE model.

In the out-of-distribution test phase, we selected datasets
with strongly defined discipline-specific features: the
MMLU-Pro dataset as the training set and the Big-Bench-
Hard dataset as the test set. Specifically, we trained the
Bench-CoE router on the MMLU-Pro dataset and evaluated

it on the Big-Bench-Hard dataset. By testing across differ-
ent datasets with distinct data distributions, and with both
training and test sets exhibiting clear discipline-specific
characteristics, this phase allowed us to thoroughly vali-
date the generalization capability of the Bench-CoE model
at both the query-level and subject-level.

B.2. MultiModal Experiment

MMMU and MMStar are currently among the most com-
prehensive multimodal benchmarks, encompassing tasks
such as cross-modal retrieval and multimodal reasoning.
To thoroughly evaluate the performance of Bench-CoE on
multimodal tasks, we designed experiments in three phases:
naive test, in-distribution test, and out-of-distribution test.

In the naive test phase, we used the MMMU dataset for
both training and testing the Bench-CoE router. The sub-
set of MMMU was utilized for both training and evalua-
tion. This phase primarily aimed to verify the basic fea-
sibility of Bench-CoE in task allocation for multimodal
tasks. By leveraging query-level and subject-level routing
strategies, Bench-CoE significantly outperformed individ-
ual models, demonstrating its effectiveness in task alloca-
tion. The query-level router provided finer-grained task as-
signments, while the subject-level router exhibited stronger
overall robustness.

In the in-distribution test phase, the test set of the
MMMU dataset was used for training, and the validation
set was used for evaluation. This setup ensured a clear sep-
aration between training and testing data while maintaining
consistency in data distribution. The Bench-CoE router ef-
fectively allocated tasks to the most suitable expert models
based on the input, showcasing its strong adaptability for
tasks within the same distribution.

In the out-of-distribution test phase, the Bench-CoE
router was trained on the validation set of the MMMU
dataset and tested on the MMStar dataset. The MMStar is
a multimodal dataset focus on the interplay between visual
and textual data in entertainment and media contexts, pre-
senting challenges to the model’s generalization capabili-
ties. The experiments demonstrated that the subject-level
router remained effective in handling tasks with significant
distributional differences, validating the adaptability and ro-
bustness of Bench-CoE. In contrast, the query-level router
showed slightly reduced performance on new data distribu-
tions, likely due to overfitting.

These experimental results indicate that Bench-CoE
effectively integrates the strengths of different models,
achieving outstanding performance in both in-distribution
and out-of-distribution tasks. This approach provides a
solid foundation for further research on collaborative mech-
anisms in multimodal models.



C. Scalability of Bench CoE

In Bench-CoE, particularly in the subject-level Bench-CoE,
we leverage the best-performing LLM for each domain as
the routing target. By directing as many questions as possi-
ble within a given domain to the "best” LLM for inference,
we enhance the overall accuracy of the model. However,
with the rapid evolution of large language models, accom-
panied by the introduction of new datasets, novel models,
and updated evaluation methods, the leaderboard rankings
of LLMs change frequently. Under such circumstances, a
fixed routing strategy in the CoE model cannot accommo-
date newly emerging models or adapt to shifting data distri-
butions.

To address this limitation and improve the scalability
of Bench-CoE, we designed a leaderboard-prior-based sub-
ject routing mechanism. Instead of directly routing inputs
to a fixed best-performing model in a domain, our router
first predicts the subject type of the given input. It then
leverages the leaderboard-prior subject-to-model mapping
to route the input to the latest and most suitable model for
that domain. This approach significantly enhances the scal-
ability of Bench-CoE, allowing it to flexibly adapt to rapidly
evolving datasets and LLM advancements by dynamically
adjusting the leaderboard and updating routing rules.

D. Scenarios Unsuitable for CoE

In our experiments with the Bench-CoE model, we selected
a wide range of LLMs as candidate models and conducted
extensive testing. Through these tests, we identified a com-
mon challenge in the CoE field: the issue of LLM capability
diversity. Specifically, this problem arises when a candidate
LLM lacks capability diversity on the given dataset—either
significantly outperforming or underperforming all other
candidate LLMs. Such cases negatively impact the over-
all performance of the CoE model, as the router is forced
to route all queries either exclusively to or completely away
from this model to achieve optimal results. This creates a
significant challenge for training the router.

Looking ahead, we believe this issue can be mitigated
with the development of dynamic routing strategies and
adaptive candidate LLM selection mechanisms. These ad-
vancements will enable the CoE model to better handle
capability imbalances among candidate LLMs, paving the
way for more robust and flexible routing solutions.
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